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Abstract 
This paper describes our experience developing techniques to 
protect embedded intellectual property (IP) while an ASIC is 
being fabricated in an untrusted foundry. We created a 
customizable, high performance, domain-specific ASIC 
processor architecture, which we showed to be effective in 
protecting IP and mitigating the expense and inflexibility 
associated with using ASIC technology. Using an ASIC Fast 
Fourier Transform (FFT) accelerator as a test case, we have 
investigated various obfuscation options and their practicality 
in ensuring the trust and security of the processor when it is 
fabricated. The result is a processor architecture that 
incorporates split fabrication, configurable switch arrays and 
fabrics, programmable controllers, and configurable functional 
kernels. We have introduced a quantitative metric to gauge the 
effectiveness of application obfuscation for a domain-specific 
processor during fabrication.  
 
Keywords—Split Fabrication; Configurability; Programmability; 
Untrusted Fabrication; ASIC Processor; IP Protection; 
Obfuscation. 

I. INTRODUCTION 
Embedded systems can be built with General 

Programmable Processors (GPPs), Field Programmable Gate 
Arrays (FPGAs), Application Specific Integrated Circuits 
(ASICs), or a combination of them. As each of these 
technologies provides a unique level of capability and 
flexibility, choosing the right one to meet the performance 
requirement without breaking SWaP (size, weight, and 
power) budget is critical in the development of embedded 
systems.  

Figure 1 represents a summary result from our long-term 
survey of defense-related embedded applications, which 
shows the potential volume efficiency (e.g., computations per 
liter) and power efficiency (e.g., computations per watt) of 
three technologies. As described by Moore’s Law, these 
values change as semiconductor technology advances, thus 
they are normalized in Figure 1 using the corresponding 
FPGA capability as a baseline. A variety of representative 
defense applications are placed on the chart according to their 
requirements. 

Besides performance, embedded system developers must 
also consider design and manufacturing complexity and cost, 
availability and usability of fabrication technology, and the 
protection of critical intellectual property (IP) embedded in 

the design. For example, an ASIC processor potentially has a 
10-1,000X performance advantage over its FPGA and GPP 
counterparts, but it is expensive and inflexible. Most of all, 
ASIC developers must mitigate the risks incurred in 
untrusted fabrication, which include IP theft, over-production 
for gray/black market sales, and unauthorized alteration. This 
paper describes the risk assessment and mitigation in our 
creation of a domain-specific ASIC processor. 

 

 
Figure 1: Embedded processing technology capabilities with the 
efficiency values normalized to account for Moore’s Law (UAV: 
unmanned aerial vehicle; SIGINT: signals intelligence) 

The rest of the paper is organized as follows. Section II 
explains our project of creating a domain-specific ASIC 
processor. Section III discusses a threat model for fabricating 
these processors in an untrusted foundry and an investigation 
of applicable obfuscation techniques. We then describe two 
domain-specific processor implementation variants for 
different usage models and explain the reasoning for our 
choices of obfuscation techniques. We introduce in Section 
IV a quantitative obfuscation metric that we have used to 
guide and assess our design. We then analyze, for each of the 
domain-specific processor variants, its performance benefits 
and its effectiveness in obfuscating critical IPs. We finish by 
discussing potential mitigations for identified residual 
vulnerabilities. Section V concludes this paper by 
summarizing our lessons learned from this project and 
suggests a few research directions. 

II. DOMAIN-SPECIFIC ASIC PROCESSORS 
As Figure 1 has shown, the ASIC is indispensable in 

certain application areas, such as advanced signal processing 
embedded in small platforms. Besides the potential of higher 
performance than FPGA and GPP, the possibility of 
fabricating special functions (e.g., analog circuits, non-
volatile memories, etc.) and digital functions on the same 
chip is very attractive in our embedded applications.  
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Nevertheless, designers shy away from ASIC processors 
because they are expensive, inflexible, and take a long time 
to fabricate. Unlike commercial products (e.g., smart 
phones), our defense-related applications do not have the 
production quantity to amortize ASIC design costs. 
Furthermore, with the increasingly high cost of trusted 
foundries, more and more advanced semiconductor processes 
will only be available at untrusted foundries. Therefore, the 
technology protection concerns for ASICs will continue to 
grow with the lack of trusted manufacturing and the 
proliferation of inexpensive reverse engineering capabilities.  

We thus have pursued a design methodology that produces 
domain-specific processors with close to ASIC performance, 
and we have addressed the other issues of using ASICs, such 
as their long fabrication time, high costs, and the need for IP 
security. Our approach is applicable to a broad class of 
defense-related applications (e.g., synthetic aperture radars) 
that depend on a small set of signal processing kernels, as 
illustrated in Figure 2. Note that these kernels must be 
configurable to support the parameters required by a wide 
range of target applications. 

 

 
Figure 2: Defense applications are built with a few processing 
functions and kernels (GMTI: ground moving target indication; 
AMTI: airborne moving target indication; SAR: synthetic 
aperture radar; SIGINT: signals intelligence; EW/ESM: 
electronic warfare/electronic support measures; Comm.: 
communications) 

The domain-specific ASIC processors under development 
are System-on-Chips (SoCs) consisting of configurable 
kernels interconnected with configurable fabrics and 
controlled by programmable processors. Other components 
such as analog-to-digital converters (ADCs), digital-to-
analog converters (DACs), and memories can also be 
included as required by a target application domain. Figure 3 
illustrates an example of such a domain-specific processor, 
which can be customized for individual applications.  

The configurable kernels (FIR, FFT, PPF, PP, and QR) 
deliver the ASIC performance needed for the applications. 
The algorithm (i.e., the so-called secret sauce) of a specific 
application will be defined by kernel configurations and 
connectivity as well as by the sequence of operations and data 
flow. In our design, the connectivity is provided by the 
configurable interconnection fabric and the operations are 
controlled by the programmable processor(s). This hardware-
for-performance and software-for-flexibility model has been 
used successfully on a number of applications. For example, 
in the synthesizable cryptographic and key management 
processor described in [1], all cryptographic kernels have 

been implemented in hardware for high performance while 
the cryptographic protocols were implemented by software in 
a microcontroller for flexibility. 

 

 
Figure 3: Example domain-specific customizable processor 
architecture (ADC: analog-to-digital converter; DAC: digital-
to-analog converter; FIR: finite impulse response filter; FFT: 
fast Fourier transform; PPF: polyphase filter; PP: partial 
product; QR: QR matrix decomposition; PUF: physical 
unclonable function) 

A security coprocessor and a physical unclonable function 
(PUF) are included in the architecture for in-field protection. 
The details of their operation (e.g., providing secure boot, 
root-of-trust, and encryption of configuration) were 
described in [2]. In this paper, we focus on the following 
question. How do we architect a domain-specific processor 
to protect application details when it is fabricated in an 
untrusted manufacturing facility?  

III. IMPLEMENTATION FOR UNTRUSTED FABRICATION 
Most circuit obfuscation research reported in literature 

takes a bottom-up approach, in which the obfuscation 
techniques are studied and/or assessed for general-purpose 
uses, without considering their mission and application 
specific roles, e.g., [3][4]. In addition, many of the studies are 
performed using low complexity benchmarks (e.g., ISCAS85 
and ISCAS89) [5]. These studies have apparently been 
contributing to the development of a knowledge foundation. 
However, they offer very little insight into the practicality of 
various obfuscation techniques in a mission or application 
where decision makers would need to know: which 
obfuscation techniques can be used, to what extent, what is 
the risk, and what are the mitigations. 

We have taken a “top-down” study approach and use 
mission and application requirements to drive the system 
design. For a domain of applications, how do we select 
obfuscation techniques to mitigate the risk of reverse 
engineering and repurposing during fabrication? Also, what 
is the impact on performance, area, power, and cost? The 
ultimate objective is to develop this knowledge and provide 
designers with a well-thought-out, multi-dimensional design 
space to ensure fabrication security and trust.  

In order to provide a concrete example to drive our 
analysis, we decided to implement one of the computational 
kernels shown in Figure 3.  Specifically, we chose to focus 
on a 1 million (1M) point FFT ASIC kernel.  Due to its wide 
use in our signal processing applications, an FFT, in 
particular a large FFT, is a reasonable representative kernel 
in our domain-specific processors. We decided to implement 
the so-called sparse FFT (SFFT) architecture, which 
leverages the fact that frequency sparse signals can be 
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represented by a few non-zero Fourier coefficients [6]. The 
functional details of this FFT architecture were previously 
reported in [7]. This paper discusses its security and trust 
during fabrication. 

The FFT kernel was first prototyped with an FPGA to 
establish a baseline for performance evaluation.  In addition, 
we designed and fabricated an ASIC implementation in a 
180-nm CMOS technology; see Figure 4.  Compared with the 
FPGA version, the ASIC kernel achieved a 10X 
improvement in throughput at merely 10% of the power 
consumption, thereby achieving a 100X power efficiency 
gain. This supports our decision to develop domain-specific 
ASIC processors. In addition to 1M point sparse FFT, the 
kernel can be configured to perform 4 regular FFT 
operations, i.e., 256 point, 1K point, 4K point, and 16K point. 
Up to two smaller (i.e., 256 point and 1K point) FFTs can be 
configured to operate concurrently in the architecture.  

 

    
Figure 4: 1M point FFT ASIC kernel (as a standalone 1 cm2 
chip) and its testbed 

A. Threat Model 
The threat model reflects the focus of our study, which is 

fabrication security and trust for defense-related processors. 
In our application domains, one of the top concerns is the 
possibility of reverse engineering of system capability from 
the embedded processor. For example, the resolution of a 
sensor system may be inferred from the size of its FFT 
operations, which is another reason we have studied the 
obfuscation of an FFT. An equally important objective is the 
protection of advanced algorithms (i.e., the secret sauce) 
embedded in the IC, which can be expressed as a series of 
computational steps with signal processing kernels. 

In contrast, the designs of kernel accelerators, such as FFT, 
FIR, QR, etc., are often well developed and available as 
textbook examples, in many cases through either open source 
archives or commercial IPs. We thus focused on obfuscating 
their application specific parameters (e.g., FFT sizes, FIR 
filter coefficients, etc.) during fabrication to avoid revealing 
application capabilities. The system level kernel connectivity 
and orchestration for operation (e.g., a process for adaptive 
beamforming) must also be protected from the access by an 
untrusted manufacturer.  

Unauthorized modifications such as the insertion of Trojan 
circuits that affect operations and/or reliability are also a 
major concern. Overproduction for gray/black market sales is 
also a threat.  

B. Mitigation 
The purpose of design obfuscation is to address the listed 

security concerns in light of the information resources 

supplied to the foundry.  Our study has focused on the 
protection of system capabilities and secret sauce. 
Obfuscation also helps with mitigating the threats of 
unauthorized modification and overproduction, which will be 
discussed in Section IV as residual vulnerabilities. 

The obfuscation technologies considered in our study are 
split fabrication, logic obfuscation, configurable 
connectivity, configurable functions, and programmable 
operations. 

C. Split Fabrication 
Our original plan considered only split fabrication [8] in 

which an untrusted foundry is tasked with the so-called front 
end process of fabricating the transistors and the first level of 
metal. A second, trusted foundry, completes the back end 
fabrication of the remaining layers of metal interconnect.  

We planned to use only upper metal layers in the back end 
process to customize a domain processor for specific 
applications. This approach would provide application 
flexibility, quick-turn-around customization, and obfuscation 
of functionality.  However, our analysis and simulation 
quickly showed that this scheme of solely depending on split 
fabrication incurs serious design complexity and 
performance penalties. The widths and pitches of upper metal 
layer interconnections are significantly more restrictive than 
their lower layer counterparts. For example, in 45 nm CMOS, 
the 9th and 10th metal layers have a pitch of 1,600 nm, while 
the 2nd and 3rd metal layers have a pitch of 140 nm. In addition 
to coarser interconnect granularity, the wider upper layer 
metal interconnects have higher capacitance, and this causes 
increased delays and requires the kernels to have larger 
drivers.  In addition, the efficacy of the obfuscation will 
depend on where the fabrication process is split.  Limiting the 
untrusted foundry to fabricating the transistors and first layer 
of metal results in a strong obfuscation, but it requires the 
trusted foundry to fabricate several layers of dense metal and 
this will be impractical unless the trusted foundry supports 
advanced fabrication.  On the other hand, fabricating all the 
dense layers at the untrusted foundry reveals too much of the 
design.   

Other issues are the complexity of coordinating the 
processes, increased costs, lack of availability of split 
fabrication multiproject runs, and the potential speed and area 
penalties caused by routing critical signals in the upper level 
metals for the purpose of obfuscation.  We did not undertake 
a quantitative evaluation of the return-on-investment on split 
fabrication, but instead relied on information available in 
literature, e.g., [9]-[13]. Based on these considerations, we 
developed the modified split fabrication architecture 
described below. 

Instead of using multiple top-level metal layers to directly 
interconnect the kernels, we created (in the front end process) 
dedicated routing lanes embedded between kernels using the 
dense local and intermediate metal layers. This concept is 
shown in Figure 5. Pass-transistor switches controlled by 
upper level metal layer connections (to be made in the back 
end process) are used to physically complete the routing 
connections. With this structure, the back end process will 
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configure and connect the kernels indirectly by selectively 
turning on switches. All the high-speed signals are confined 
to the lower metal layers to maximize performance.  The area 
overhead of these routing lanes scales with the footprints of 
kernels they are connecting, but in general the routing will be 
negligible since the kernels are typically quite large. For the 
FFT design shown in Figure 4, the switches represented only 
1% of the total chip area. This switch-based customization 
scheme is easier to design and has significant area and delay 
advantages over the original upper metal configuration 
scheme.  

 

 
Figure 5: Configurable routing structure that overcomes the 
upper level metal routing challenges in split fabrication 

An alternative split fabrication approach is to use 2.5D and 
3D integration techniques that allow the integration of two or 
more chips either by direct wafer bonding or advanced 
packaging, see [14][15]. 2.5D typically refers to the use of 
silicon interposers between a substrate and components, 
where the interposer has through-silicon vias (TSVs) 
connecting the metallization layers on its upper and lower 
surfaces, while 3D IC connect components directly through 
TSVs, without the use of interposers [15]. A range of vertical 
integration approaches can be implemented by bonding 
together full wafers, stacking individual circuit die, or 
employing hybrid die-to-wafer and reconstituted wafer 
techniques [16].  This approach is an attractive way to 
integrate two or more incompatible fabrication technologies, 
e.g. a low-noise RF tier with a high-speed digital tier.  It can 
provide obfuscation if the circuit tiers are fabricated in 
different foundries, and there has been some work on 
partitioning guidelines and quantitative metrics of 
effectiveness [17].  There is opportunity for further work in 
this area, but we chose not to pursue 3D integration due to 
resource constraints on the current phase of this project. 

The most significant hindrance to the split fabrication 
approaches is that relevant design tools are, if available at all, 
primitive and immature. This concern has eventually limited 
our use of split fabrication in our design. 

D. Logic Obfuscation 
Logic obfuscation is popular in the literature, e.g., [10][11]. 

In these active obfuscation techniques, the netlist for the 
design is altered to obfuscate the logic and to accommodate 
special circuitry that activates the logic function of the 
device.  The circuit is activated using some type of firmware 
that is installed in a trusted environment after IC fabrication.   

Prior to activation, the chip is resilient against reverse 
engineering, since the chip is “incomplete” without the 
necessary activation firmware.  Active obfuscation also 

removes the economic incentive for overproduction, since 
the chips will not function without activation. Continued 
protection of the design in the field requires protecting the 
firmware used in the activation process. 

As we explained in Section III.A, we are less concerned 
with revealing the internal logic of the kernels, since these 
represent textbook designs. Furthermore, there is a lack of 
mature CAD tools that can obfuscate the circuit and evaluate 
the efficacy of the logic obfuscation.  For these reasons, we 
decided not to implement logic obfuscation in this system.  
As the tool infrastructure matures, we will revisit this 
decision.  We did leverage the concept of circuit activation as 
a means of protection, which we now describe in the next 
section. 

E. Configurability and Programmability 
The benefits and costs of implementing function 

obfuscation via circuit configurability and programmability 
are exemplified in the FPGA and GPP. At fabrication time, 
an FPGA or a GPP effectively hides the in-system behavior 
of the chip since the function of the part is controlled by the 
embedded software/firmware, which is installed after 
fabrication. In addition, they support updating in the field. 
Configurability and programmability, as illustrated in Figure 
3, are the dominant obfuscation techniques used in our design 
to ensure the security of the design, system capabilities, and 
algorithms.  

The configurability and programmability aspects of our 
design mitigate concerns of overproduction for gray/black 
market sales. A chip is of limited value without its 
customization firmware and instruction system architecture 
documentation. Indeed, adversaries may consider the 
uncommitted processor architecture to be a textbook case of 
SoC architecture, in that case developing anew seems to be a 
more attractive path than reverse engineering. 

The software and firmware, which give the processor its 
personality, must be protected from reverse engineering in 
the field. A suitable security architecture that uses a 
coprocessor and PUF has been developed [2]. 

F. Implementation 
This domain-specific processor was designed to support a 

broad range of development projects and is protected with 
three obfuscation techniques: split-fabrication, 
configurability, and programmability. In addition to this base 
implementation, which we will refer to as the regular 
implementation, we have also designed a variant of the 
processor dedicated for prototyping. The variant will not 
include split fabrication in order to increase its availability 
and usability. In this case, instead of using the back-end metal 
process to establish the connectivity between kernels, the 
routing switches are designed to be controlled by firmware 
loaded after fabrication. 

The two implementations and their obfuscation techniques 
are summarized in Table 1, which also includes an FPGA as 
a baseline in the following discussion.  

Table 1: Domain-specific processor implementations for 
fabrication security and trust (S: split fabrication, C: 
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configurability, P: programmability, µP: microprocessor, DSP: 
digital signal processor) 

Implementation  Lowest Level 
Elements 

S C P 

 
FPGA 

(Baseline) 

LUTs, µPs, DSPs, 
switch fabrics, 

memories 

  
X 

 
X 

Domain-Specific 
Processor (Regular) 

Domain optimized 
kernels (FFTs, FIRs, 

etc.), µPs, switch 
fabrics, memories, 

security coprocessors, 
PUFs   

 
X 

 
X 

 
X 

 
Domain-Specific 

Processor (Variant 
for Prototyping) 

  
 

X 

 
 

X 

 
In both cases, fabrication security and trust come from the 

fact that the exact processor architecture remains undefined 
until post fabrication. All kernels are designed to be 
configurable by an application-specific bit stream, which 
defines their parameters (e.g., FFT size and FIR coefficients). 
The connectivity between the required kernels is also 
customizable by a configurable switch fabric. Note that an 
application may not require the participation of all kernels. 
Furthermore, the data flow and operating steps are controlled 
by software in the programmable processors, which is loaded 
only after fabrication.  

We have also made design choices that potentially can 
enhance security and trust at fabrication. For example, as 
shown in Figure 6, in the design of an FFT kernel, we have 
created an array of 4K FFT modules and used configurable 
switch arrays (SWs) to customize them into the sizes required 
by the operation. This design is not optimal; the FFT sizes in 
later stages could be made much smaller.  This architectural 
choice increases circuit area, but only incurs a minimal 
penalty on performance.  It has the advantages of modularity 
and configurability.  The fact that the design can be 
configured into a 1M point sparse FFT or several different 
regular FFTs not only increases usability, but also helps with 
obfuscation. We will further discuss the relation between 
configurability and obfuscation in Section IV.B. 

 
Figure 6: Architecture choice to increase configurability for the 
FFT kernel (SW: switch array) 

 

IV. ASSESSMENT 

A. Performance 
Table 2 summarizes our assessment on the relative 

performance merits of the two implementation options using 
FPGAs as a baseline.  

Table 2: Estimated relative performance merits of domain-
specific processor implementations comparing to an FPGA 
(GOPS: billion operations per second) 

 
 

Implementation 
 

Application-
Specific 

Fabrication 
Latency 

 
Relative 

Performance 
Merits 

 
 

Remarks 

 
FPGA 

(Baseline) 

 
 

None 

Power (1X); 
Throughput 
(1X); Cost 
(1X) 

E.g., 10 W, 
10 GOPs, 
$5K/chip 

 
 

Domain-Specific 
Processor 
(Regular) 

 
 

~10 weeks 
for upper 

metallization 

Power 
(0.1X); 
Throughput 
(10-100X); 
Cost  
(40X for 1 
wafer) 

Cost may 
reduce to 
10X when 

split 
fabrication 

has matured 

 
Domain-Specific 

Processor 
(Variant for 

Prototyping) 

 
 

None 

Power 
(0.5X); 
Throughput 
(10X);  
Cost (10X for 
20 chips) 

 
No special 
processing 

requirements 
 

B. Security and Trust 
When we set up the threat model, we mentioned that 

protecting the design logic circuits is not a priority. The 
manufacturer, by reverse engineering, can determine the 
kernel function type (e.g., an FFT) from the GDSII netlist. 
The security and trust are established on the assumption that 
the kernel parameters (e.g., beyond its maximum FFT size), 
the connectivity of kernels, and the algorithm for the 
application remain undetectable by the manufacturer.  

In order to quantitatively examine the effectiveness of our 
design, we have introduced a quantitative metric, based on 
Shannon entropy [18], to reflect the complexity of 
determining target application capability and secret sauce by 
reverse engineering. Our metric is an extension of the cell-
level metrics suggested in [19] to measure a design’s 
effectiveness in countering functional and physical profiling. 
The assessment is performed at the processor’s building 
blocks (i.e., kernels, switch arrays, fabrics, etc.) by 
determining the number of their possible variations. We 
define the entropy of a block k as 

𝐸𝐸𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑜𝑜 𝑘𝑘′𝑠𝑠 𝑣𝑣𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑛𝑛𝑠𝑠) 𝑛𝑛𝑣𝑣𝑣𝑣𝑠𝑠. 
We believe that a building block with large entropy is 

harder for an attacker to determine its use in an application. 
For example, the function of a fixed kernel design (E = 0) can 
be unambiguously determined. In contrast, it is more 
challenging to guess how a highly configurable kernel, which 
has a large E, will be used in an application. We have applied 
this metric to our assessment of the domain-specific 
processor in Table 3.  

Table 3: Entropies of a domain-specific processor and its 
building blocks 

Entity Variables Entropy 
FIR 20 32-bit taps 640 
FFT 8 FFT settings 3 
PPF 100 32-bit taps 3,200 
PP Non-configurable 0 
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QR 15 matrix sizes 3.9 
Fabric 5 by 5 Fully connected  6.9 
Processor All of above 3,853.8 

 
The quantitative relation between entropy and reverse 

engineering complexity warrants further research, however, 
we suggest that a design should aim at achieving high 
entropy. For this paper, we have provided a qualitative 
assessment of the effectiveness of obfuscation techniques 
against potential threats, see Table 4. 

Table 4: Effectiveness in mitigating fabrication threats 

Effectiveness 
Protecting Against 

 
Regular 

 
Variant 

Revealing Application 
Capability 

High High 

Revealing IP: 
Algorithm 

High High 

Revealing IP: Logic None None 
Function Modification Medium Medium 
Reliability Reduction None None 

Repurposing Medium Medium 

C. Residual Vulnerabilities 
Table 4 also exposes the residual vulnerabilities of a 

domain-specific ASIC processor during an untrusted 
fabrication. Obfuscation by itself does not prevent 
unauthorized modification. This is not a unique ASIC 
vulnerability as both FPGA and GPP need to deal with the 
same threat. The prevention and detection of Trojan 
insertions are beyond the scope of this paper, but we believe 
that, without detailed knowledge of how its target application 
works, the effort needed for application-specific Trojan 
insertion increases.  

Reproduction for repurposing is definitely possible, but 
will require a significant reverse engineering effort to 
determine how to target the “reproduced” processor to an 
application. As discussed above, we believe that it is more 
attractive to build a processor anew than to repurpose one by 
reverse engineering.  

V. CONCLUSION 
This paper describes our experience designing a domain-

specific ASIC processor with obfuscation techniques to 
protect application information from leaking during 
fabrication. While obfuscation has been a popular research 
area, we felt that the lack of mature tools and practical 
assessment metrics is a major hindrance with using them.  

Designers have long accepted the principle of 
hardware/software co-design. A natural next step is to expand 
the co-design methodology and include security and trust. 
This requires a new generation of design tools and metrics to 
assess the efficacy of obfuscation techniques in meeting 
mission and application needs.  

Last but not least, the traditionally used generic 
obfuscation benchmarks should be augmented by 
architecting a few non-obfuscated domain-relevant strawman 
designs as baselines. These design baselines should facilitate 

a better understanding of obfuscation techniques in 
applications and missions. 
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